We study intense laser-matter interactions through computational approaches.
“Theory is when you know everything but nothing works.
Experiment is when everything works but no one knows why.
In our lab, theory and experiment are combined: nothing works and no one knows why.”
I. Relativistic laser-plasma interactions
Key words: ultraintense laser; relativistic plasma; radiation sources; particle-in-cell simulations.
This research explores the intersection of relativistic nonlinear optics and plasma physics, with a primary focus on developing novel radiation sources (extreme photonics) using laser-plasma interactions. These sources include high-order harmonic generation (HHG) and attosecond pulses, brilliant x-ray and gamma-ray radiation, high-field terahertz (THz) emissions, and electromagnetic pulses (EMP).
Further research interests include laser-plasma acceleration of various particles (electrons, ions, positrons, and neutrons), laboratory astrophysics, the study of ultrafast and high-field phenomena, and high energy density physics.
荣获2018年诺贝尔物理学奖的啁啾脉冲放大(CPA)技术,使得超短超强激光能在实验室创造出前所未有的超高能量密度、超强电磁场和超快时间尺度等综合极端物理条件。当前最前沿的激光功率可达10拍瓦(1拍瓦=1015瓦)量级,经聚焦后在单位时间、单位空间内的能量密度可达1023瓦/平方厘米以上,不仅妥妥的地表最强,甚至还超过了宇宙中伽马射线暴的强度。在如此极端光场下,光与物质(几乎所有的物质都已被电离成等离子体)相互作用蕴含大量丰富有趣的物理,还可能带来许多实际应用,比如带电粒子可以在很短距离内被加速到很高能量,能以不同机制辐射出超短超亮电磁波,还能产生显著的辐射阻尼、正负电子对产生和湮灭等量子电动力学效应。超短超强激光的飞速发展开辟了激光聚变、激光加速、新型辐射源、核物理与核医学、实验室天体物理等新兴前沿领域,并且还在不断地往(功率)更高、(脉宽)更快、(光强)更强推进。我们的研究工作包括但不限于基于相对论强度激光(功率密度大于1018瓦/平方厘米)与等离子体相互作用的新型辐射光源的产生和应用,涉及高次谐波和阿秒脉冲(2023年诺贝尔物理学奖)、高亮度X射线和γ光源、强场太赫兹辐射、射频微波电磁脉冲等。
招生信息:本研究方向招收硕、博士研究生。招生专业:物理学。研究方向:等离子体物理。
We are always looking for motivated undergraduates, graduate students, and postdoctoral scholars to join our team!
Relevant publications:
- Peng Chen, Zeyue Pang, and Zi-Yu Chen*, Isolated attosecond pluses from Airy-beam-driven relativistic plasma mirrors, Physical Review A 109, 013522 (2024).
- Zi-Yu Chen* and Ronghao Hu*, Sen Zhang, and Tingfei Yuan, Relativistic high-order harmonic generation of spatiotemporal optical vortices, Physical Review A 106, 013516 (2022).
- Zi-Yu Chen* and Ronghao Hu*, Intense high-order harmonic vector beams from relativistic plasma mirrors, Physical Review A 103, 023507 (2021).
- Zi-Yu Chen, Spectral control of high harmonics from relativistic plasmas using bicircular fields, Physical Review E 97, 043202 (2018).
- Zi-Yu Chen* and Alexander Pukhov*, Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror, Nature Communications 7, 12515 (2016).
II. Strong-field laser-solids interactions
Using first-principles simulations based on the framework of real-time time-dependent density-functional theory (TDDFT), this research investigates:
- Non-perturbative high-order harmonic generation in the condensed phase;
- Strong-field-driven ultrafast carrier dynamics and nonlinearities in novel materials.
These studies are relevant to applications such as novel compact short-wavelength light sources, attosecond photonics, nanophotonics, strong-feild optoelectronics, petahertz electronics, spectroscopy with attosecond-nanometer resolution, etc.
Relevant publications:
- Rui Qin and Zi-Yu Chen*, Angle-dependent high harmonic generation in a topological phase transition of monolayer black phosphorous, Physical Review A 109, 043102 (2024).
- Zi-Yu Chen#* and Rui Qin#*, High harmonic generation in graphene-boron nitride heterostructures, Journal of Materials Chemistry C 8, 12085 (2020).
- Zi-Yu Chen* and Rui Qin*, Probing structural chirality of crystals using high-order harmonic generation in solids, Physical Review A 101, 053423 (2020).
- Zi-Yu Chen* and Rui Qin*, Circularly polarized extreme ultraviolet high harmonic generation in graphene, Optics Express 27, 3761 (2019).
- Rui Qin#* and Zi-Yu Chen#*, Strain-controlled high harmonic generation with Dirac fermions in silicene, Nanoscale 10, 22593 (2018).